Convergence

To make sure of the similarity, we calculate the space errors on th epressure in the Lebesgue norm (\(L^2\)) and the space error on the velocity in the Lebesgue and Soboloev norm (\((H^1)\)):

\[\begin{eqnarray} \Vert p-p_h\Vert_{L^2(\Omega)} &=& \left(\int_{\Omega}{(p-p_h)^2}\right)^{\frac{1}{2}}\\ \Vert\mathbf{u}-\mathbf{u}_h\Vert_{L^2(\Omega)} &=& \left(\int_{\Omega}{\sum_{i=1}^{3}{(u_i-u_{i,h})^2}}\right)^{\frac{1}{2}}\\ \Vert\mathbf{u}-\mathbf{u}_h\Vert_{H^1(\Omega)} &=& \left(\int_{\Omega}{\sum_{i=1}^{3}{\Vert u_i-u_{i,h}\Vert_{H^1(\Omega)}^2}}\right)^{\frac{1}{2}}\\ \end{eqnarray}\]

Where:

\[\Vert u_i-u_{i,h}\Vert_{H^1(\Omega)} = \Vert u_i-u_{i,h}\Vert_{L^2(\Omega)} + \sum_{j=1}^{3}{\left\Vert\frac{\partial u_i}{\partial x_j}-\frac{\partial u_{i,h}}{\partial x_j}\right\Vert_{L^2(\Omega)}}\]

Stokes

Dirichlet conditions

The obtained convergence orders for the velocity and the pressure errors according to the mesh step (see. Figure 1) lead to conclude that the proposed approach is good.

Stokes Convergence
Figure 1. Convergence curves (logarithmic scale) for velocity in \(L^2\) (left: expected slope 3), velocity in \((H^1)\) (middle: expected slope 2) and pressure in \(L^2\) (right: expected slope 2).

Mixed conditions

The obtained convergence orders for the velocity and the pressure errors according to the mesh step (see. Figure 2) lead to conclude that the proposed approach is good.

Stokes Convergence Mixed
Figure 2. Convergence curves (logarithmic scale) for velocity in \(L^2\) (left: expected slope 3), velocity in \((H^1)\) (middle: expected slope 2) and pressure in \(L^2\) (right: expected slope 2).

Navier-Stokes

Dirichlet conditions

Ethier-Steinmann benchmark only, Figure 3.

Navier Stokes Convergence
Figure 3. Convergence curves (logarithmic scale) for velocity in \(L^2\), velocity in \((H^1)\) (left: expected slope 3) and pressure in \(L^2\) (right: expected slope 2).

Mixed conditions

Ethier-Steinmann benchmark only, Figure 4.

Navier Stokes Convergence Mixed
Figure 4. Convergence curves (logarithmic scale) for velocity in \(L^2\), velocity in \((H^1)\) (left: expected slope 3) and pressure in \(L^2\) (right: expected slope 1).

All Codes

Ethier-Steinmann

Dirichlet

  • Stokes_ES_dirichlet.edp

  • Navier-Stokes_ES_dirichlet.edp

Mixed

  • Stokes_ES_mixed.edp

  • Navier-Stokes_ES_mixed.edp

Bercovier-Engelman

Dirichlet

  • Stokes_BE_dirichlet.edp

  • Navier-Stokes_BE_dirichlet.edp

Mixed

  • Stokes_BE_mixed.edp

  • Navier-Stokes_BE_mixed.edp

Minev-Ethier

Dirichlet

  • Stokes_ME_dirichlet.edp

  • Navier-Stokes_ME_dirichlet.edp

Mixed

  • Stokes_ME_mixed.edp

  • Navier-Stokes_ME_mixed.edp